home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip: 2001 Haziran
/
CHIP Haziran2001.iso
/
prog
/
haziran
/
19
/
setup.exe
/
data.z
/
iop480_lib.c
< prev
next >
Wrap
C/C++ Source or Header
|
2001-04-11
|
32KB
|
1,035 lines
////////////////////////////////////////////////////////////////
// File - IOP480_LIB.C
//
// Library for 'WinDriver for PLX IOP 480' API.
// The basic idea is to get a handle for the board
// with IOP480_Open() and use it in the rest of the program
// when calling WD functions. Call IOP480_Close() when done.
//
////////////////////////////////////////////////////////////////
#include "iop480_lib.h"
#include "../../../include/windrvr_int_thread.h"
#include <stdio.h>
// this string is set to an error message, if one occurs
CHAR IOP480_ErrorString[1024];
// internal data structures and enums
enum { IOP480_DMA_CHANNEL_SHIFT = 0x20 }; // shift in address between channels 0 and 1 of DMA
typedef struct IOP480_DMA_STRUCT{
WD_DMA dma;
WD_DMA dmaList;
IOP480_DMA_CHANNEL dmaChannel;
} IOP480_DMA_STRUCT;
enum { IOP480_MODE_DESC = 0xF9000140 };
enum { IOP480_MODE_DESC_BYTE = 0x00000000 };
enum { IOP480_MODE_DESC_WORD = 0x00010001 };
enum { IOP480_MODE_DESC_DWORD = 0x00030003 };
typedef struct
{
WD_INTERRUPT Int;
HANDLE hThread;
WD_TRANSFER Trans[2];
IOP480_INT_HANDLER funcIntHandler;
} IOP480_INTERRUPT;
typedef struct
{
DWORD dwLocalBase;
DWORD dwMask;
DWORD dwBytes;
DWORD dwAddr;
DWORD dwAddrDirect;
BOOL fIsMemory;
} IOP480_ADDR_DESC;
typedef struct IOP480_STRUCT
{
HANDLE hWD;
WD_CARD cardLock;
WD_PCI_SLOT pciSlot;
WD_CARD_REGISTER cardReg;
IOP480_ADDR_DESC addrDesc[AD_PCI_BARS];
DWORD addrSpace;
BOOL fUseInt;
IOP480_INTERRUPT Int;
} IOP480_STRUCT;
// internal function used by IOP480_Open()
BOOL IOP480_DetectCardElements(IOP480_HANDLE hPlx);
// internal function used by IOP480_Read... and IOP480_Write... functions
void IOP480_SetMode (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, IOP480_MODE mode, DWORD dwLocalAddr);
DWORD IOP480_CountCards (DWORD dwVendorID, DWORD dwDeviceID)
{
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
HANDLE hWD = INVALID_HANDLE_VALUE;
IOP480_ErrorString[0] = '\0';
hWD = WD_Open();
// check if handle valid & version OK
if (hWD==INVALID_HANDLE_VALUE)
{
sprintf( IOP480_ErrorString, "Cannot open " WD_PROD_NAME " device\n");
return 0;
}
BZERO(ver);
WD_Version(hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( IOP480_ErrorString, "error - incorrect " WD_PROD_NAME " version\n");
WD_Close (hWD);
return 0;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hWD, &pciScan);
WD_Close (hWD);
if (pciScan.dwCards==0)
sprintf( IOP480_ErrorString, "no cards found\n");
return pciScan.dwCards;
}
BOOL IOP480_Open (IOP480_HANDLE *phPlx, DWORD dwVendorID, DWORD dwDeviceID, DWORD nCardNum, DWORD dwOptions)
{
IOP480_HANDLE hPlx = (IOP480_HANDLE) malloc (sizeof (IOP480_STRUCT));
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
WD_PCI_CARD_INFO pciCardInfo;
DWORD dwIntEnb;
*phPlx = NULL;
IOP480_ErrorString[0] = '\0';
BZERO(*hPlx);
hPlx->hWD = WD_Open();
// check if handle valid & version OK
if (hPlx->hWD==INVALID_HANDLE_VALUE)
{
sprintf( IOP480_ErrorString, "Cannot open " WD_PROD_NAME " device\n");
goto Exit;
}
BZERO(ver);
WD_Version(hPlx->hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( IOP480_ErrorString, "error - incorrect " WD_PROD_NAME " version\n");
goto Exit;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hPlx->hWD, &pciScan);
if (pciScan.dwCards==0) // Found at least one card
{
sprintf( IOP480_ErrorString, "error - Cannot find PCI card\n");
goto Exit;
}
if (pciScan.dwCards<=nCardNum)
{
sprintf( IOP480_ErrorString, "Card out of range of available cards\n");
goto Exit;
}
BZERO(pciCardInfo);
pciCardInfo.pciSlot = pciScan.cardSlot[nCardNum];
WD_PciGetCardInfo (hPlx->hWD, &pciCardInfo);
hPlx->pciSlot = pciCardInfo.pciSlot;
hPlx->cardReg.Card = pciCardInfo.Card;
hPlx->fUseInt = (dwOptions & IOP480_OPEN_USE_INT) ? TRUE : FALSE;
if (!hPlx->fUseInt)
{
DWORD i;
// Remove interrupt item if not needed
for (i=0; i<hPlx->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPlx->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->item = ITEM_NONE;
}
}
else
{
DWORD i;
// make interrupt resource sharable
for (i=0; i<hPlx->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPlx->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->fNotSharable = FALSE;
}
}
hPlx->cardReg.fCheckLockOnly = FALSE;
WD_CardRegister (hPlx->hWD, &hPlx->cardReg);
if (hPlx->cardReg.hCard==0)
{
sprintf ( IOP480_ErrorString, "error - could not lock device\n");
goto Exit;
}
if (!IOP480_DetectCardElements(hPlx))
{
sprintf ( IOP480_ErrorString, "error - card does not have all items expected for PLX IOP 480\n");
goto Exit;
}
// this disables interrupts
dwIntEnb = IOP480_ReadReg (hPlx, IOP480_PINTENB);
IOP480_WriteReg (hPlx, IOP480_PINTENB, BIT0);
// Open finished OK
*phPlx = hPlx;
return TRUE;
Exit:
// Error durin Open
if (hPlx->cardReg.hCard)
WD_CardUnregister(hPlx->hWD, &hPlx->cardReg);
if (hPlx->hWD!=INVALID_HANDLE_VALUE)
WD_Close(hPlx->hWD);
free (hPlx);
return FALSE;
}
void IOP480_GetPciSlot(IOP480_HANDLE hPlx, WD_PCI_SLOT *pPciSlot)
{
*pPciSlot = hPlx->pciSlot;
}
DWORD IOP480_ReadPCIReg(IOP480_HANDLE hPlx, DWORD dwReg)
{
WD_PCI_CONFIG_DUMP pciCnf;
DWORD dwVal;
BZERO (pciCnf);
pciCnf.pciSlot = hPlx->pciSlot;
pciCnf.pBuffer = &dwVal;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = TRUE;
WD_PciConfigDump(hPlx->hWD,&pciCnf);
return dwVal;
}
void IOP480_WritePCIReg(IOP480_HANDLE hPlx, DWORD dwReg, DWORD dwData)
{
WD_PCI_CONFIG_DUMP pciCnf;
BZERO (pciCnf);
pciCnf.pciSlot = hPlx->pciSlot;
pciCnf.pBuffer = &dwData;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = FALSE;
WD_PciConfigDump(hPlx->hWD,&pciCnf);
}
BOOL IOP480_DetectCardElements(IOP480_HANDLE hPlx)
{
DWORD i;
DWORD ad_sp;
BZERO(hPlx->Int);
BZERO(hPlx->addrDesc);
for (i=0; i<hPlx->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPlx->cardReg.Card.Item[i];
switch (pItem->item)
{
case ITEM_MEMORY:
case ITEM_IO:
{
DWORD dwBytes;
DWORD dwAddr;
DWORD dwPhysAddr;
DWORD dwAddrDirect = 0;
BOOL fIsMemory;
if (pItem->item==ITEM_MEMORY)
{
dwBytes = pItem->I.Mem.dwBytes;
dwAddr = pItem->I.Mem.dwTransAddr;
dwAddrDirect = pItem->I.Mem.dwUserDirectAddr;
dwPhysAddr = pItem->I.Mem.dwPhysicalAddr;
fIsMemory = TRUE;
}
else
{
dwBytes = pItem->I.IO.dwBytes;
dwAddr = pItem->I.IO.dwAddr;
dwPhysAddr = dwAddr & 0xffff;
fIsMemory = FALSE;
}
for (ad_sp=IOP480_ADDR_REG; ad_sp<=IOP480_ADDR_EPROM; ad_sp++)
{
DWORD dwPCIAddr;
DWORD dwPCIReg;
if (hPlx->addrDesc[ad_sp].dwAddr) continue;
if (ad_sp==IOP480_ADDR_REG) dwPCIReg = PCI_BAR0;
else if (ad_sp<IOP480_ADDR_EPROM)
dwPCIReg = PCI_BAR1 + 4*(ad_sp-IOP480_ADDR_SPACE0);
else dwPCIReg = PCI_ERBAR;
dwPCIAddr = IOP480_ReadPCIReg(hPlx, dwPCIReg);
if (dwPCIAddr & 1)
{
if (fIsMemory) continue;
dwPCIAddr &= ~0x3;
}
else
{
if (!fIsMemory) continue;
dwPCIAddr &= ~0xf;
}
if (dwPCIAddr==dwPhysAddr)
break;
}
if (ad_sp<=IOP480_ADDR_EPROM)
{
DWORD j;
hPlx->addrDesc[ad_sp].dwBytes = dwBytes;
hPlx->addrDesc[ad_sp].dwAddr = dwAddr;
hPlx->addrDesc[ad_sp].dwAddrDirect = dwAddrDirect;
hPlx->addrDesc[ad_sp].fIsMemory = fIsMemory;
hPlx->addrDesc[ad_sp].dwMask = 0;
for (j=1; j<hPlx->addrDesc[ad_sp].dwBytes && j!=0x80000000; j *= 2)
{
hPlx->addrDesc[ad_sp].dwMask =
(hPlx->addrDesc[ad_sp].dwMask << 1) | 1;
}
}
}
break;
case ITEM_INTERRUPT:
if (hPlx->Int.Int.hInterrupt) return FALSE;
hPlx->Int.Int.hInterrupt = pItem->I.Int.hInterrupt;
break;
}
}
// check that all the items needed were found
// check if interrupt found
if (hPlx->fUseInt && !hPlx->Int.Int.hInterrupt)
{
return FALSE;
}
// check that the registers space was found
if (!IOP480_IsAddrSpaceActive(hPlx, IOP480_ADDR_REG))
//|| hPlx->addrDesc[IOP480_ADDR_REG].dwBytes!=IOP480_RANGE_REG)
return FALSE;
// use address space 0 for accessing local addresses
hPlx->addrSpace = IOP480_ADDR_SPACE0;
// check that address space 0 was found
if (!IOP480_IsAddrSpaceActive(hPlx, hPlx->addrSpace)) return FALSE;
return TRUE;
}
void IOP480_Close(IOP480_HANDLE hPlx)
{
// disable interrupts
if (IOP480_IntIsEnabled(hPlx))
IOP480_IntDisable(hPlx);
// unregister card
if (hPlx->cardReg.hCard)
WD_CardUnregister(hPlx->hWD, &hPlx->cardReg);
// close WinDriver
WD_Close(hPlx->hWD);
free (hPlx);
}
BOOL IOP480_IsAddrSpaceActive(IOP480_HANDLE hPlx, IOP480_ADDR addrSpace)
{
return hPlx->addrDesc[addrSpace].dwAddr!=0;
}
DWORD IOP480_ReadReg (IOP480_HANDLE hPlx, DWORD dwReg)
{
return IOP480_ReadDWord(hPlx, IOP480_ADDR_REG, dwReg);
}
void IOP480_WriteReg (IOP480_HANDLE hPlx, DWORD dwReg, DWORD dwData)
{
IOP480_WriteDWord(hPlx, IOP480_ADDR_REG, dwReg, dwData);
}
BYTE IOP480_ReadByte (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, DWORD dwOffset)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
BYTE *pByte = (BYTE *) dwAddr;
return *pByte;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_BYTE;
trans.dwPort = dwAddr;
WD_Transfer (hPlx->hWD, &trans);
return trans.Data.Byte;
}
}
void IOP480_WriteByte (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, DWORD dwOffset, BYTE data)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
BYTE *pByte = (BYTE *) dwAddr;
*pByte = data;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_BYTE;
trans.dwPort = dwAddr;
trans.Data.Byte = data;
WD_Transfer (hPlx->hWD, &trans);
}
}
WORD IOP480_ReadWord (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, DWORD dwOffset)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
WORD *pWord = (WORD *) dwAddr;
return *pWord;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_WORD;
trans.dwPort = dwAddr;
WD_Transfer (hPlx->hWD, &trans);
return trans.Data.Word;
}
}
void IOP480_WriteWord (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, DWORD dwOffset, WORD data)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
WORD *pWord = (WORD *) dwAddr;
*pWord = data;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_WORD;
trans.dwPort = dwAddr;
trans.Data.Word = data;
WD_Transfer (hPlx->hWD, &trans);
}
}
DWORD IOP480_ReadDWord (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, DWORD dwOffset)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
DWORD *pDword = (DWORD *) dwAddr;
return *pDword;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_DWORD;
trans.dwPort = dwAddr;
WD_Transfer (hPlx->hWD, &trans);
return trans.Data.Dword;
}
}
void IOP480_WriteDWord (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, DWORD dwOffset, DWORD data)
{
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddrDirect + dwOffset;
DWORD *pDword = (DWORD *) dwAddr;
*pDword = data;
}
else
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_DWORD;
trans.dwPort = dwAddr;
trans.Data.Dword = data;
WD_Transfer (hPlx->hWD, &trans);
}
}
void IOP480_ReadWriteBlock (IOP480_HANDLE hPlx, DWORD dwOffset, PVOID buf,
DWORD dwBytes, BOOL fIsRead, IOP480_ADDR addrSpace, IOP480_MODE mode)
{
DWORD dwAddr = hPlx->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
if (hPlx->addrDesc[addrSpace].fIsMemory)
{
if (fIsRead)
{
if (mode==IOP480_MODE_BYTE) trans.cmdTrans = RM_SBYTE;
else if (mode==IOP480_MODE_WORD) trans.cmdTrans = RM_SWORD;
else trans.cmdTrans = RM_SDWORD;
}
else
{
if (mode==IOP480_MODE_BYTE) trans.cmdTrans = WM_SBYTE;
else if (mode==IOP480_MODE_WORD) trans.cmdTrans = WM_SWORD;
else trans.cmdTrans = WM_SDWORD;
}
}
else
{
if (fIsRead)
{
if (mode==IOP480_MODE_BYTE) trans.cmdTrans = RP_SBYTE;
else if (mode==IOP480_MODE_WORD) trans.cmdTrans = RP_SWORD;
else trans.cmdTrans = RP_SDWORD;
}
else
{
if (mode==IOP480_MODE_BYTE) trans.cmdTrans = WP_SBYTE;
else if (mode==IOP480_MODE_WORD) trans.cmdTrans = WP_SWORD;
else trans.cmdTrans = WP_SDWORD;
}
}
trans.dwPort = dwAddr;
trans.fAutoinc = TRUE;
trans.dwBytes = dwBytes;
trans.dwOptions = 0;
trans.Data.pBuffer = buf;
WD_Transfer (hPlx->hWD, &trans);
}
void IOP480_ReadBlock (IOP480_HANDLE hPlx, DWORD dwOffset, PVOID buf,
DWORD dwBytes, IOP480_ADDR addrSpace, IOP480_MODE mode)
{
IOP480_ReadWriteBlock (hPlx, dwOffset, buf, dwBytes, TRUE, addrSpace, mode);
}
void IOP480_WriteBlock (IOP480_HANDLE hPlx, DWORD dwOffset, PVOID buf,
DWORD dwBytes, IOP480_ADDR addrSpace, IOP480_MODE mode)
{
IOP480_ReadWriteBlock (hPlx, dwOffset, buf, dwBytes, FALSE, addrSpace, mode);
}
void IOP480_SetMode (IOP480_HANDLE hPlx, IOP480_ADDR addrSpace, IOP480_MODE mode, DWORD dwLocalAddr)
{
DWORD dwRegOffset = 8*(addrSpace-IOP480_ADDR_SPACE0);
IOP480_ADDR_DESC *addrDesc = &hPlx->addrDesc[addrSpace];
addrDesc->dwLocalBase = dwLocalAddr & addrDesc->dwMask;
addrDesc->dwLocalBase |= BIT0;
IOP480_WriteReg (hPlx, IOP480_LAS0BA + dwRegOffset, addrDesc->dwLocalBase);
}
BYTE IOP480_ReadByteLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
IOP480_SetMode (hPlx, IOP480_ADDR_SPACE0, IOP480_MODE_BYTE, dwLocalAddr);
return IOP480_ReadByte(hPlx, hPlx->addrSpace, dwOffset);
}
void IOP480_WriteByteLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr, BYTE data)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
IOP480_SetMode (hPlx, IOP480_ADDR_SPACE0, IOP480_MODE_BYTE, dwLocalAddr);
IOP480_WriteByte(hPlx, hPlx->addrSpace, dwOffset, data);
}
WORD IOP480_ReadWordLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
IOP480_SetMode (hPlx, IOP480_ADDR_SPACE0, IOP480_MODE_WORD, dwLocalAddr);
return IOP480_ReadWord(hPlx, hPlx->addrSpace, dwOffset);
}
void IOP480_WriteWordLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr, WORD data)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
IOP480_SetMode (hPlx, IOP480_ADDR_SPACE0, IOP480_MODE_WORD, dwLocalAddr);
IOP480_WriteWord(hPlx, hPlx->addrSpace, dwOffset, data);
}
DWORD IOP480_ReadDWordLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
IOP480_SetMode (hPlx, IOP480_ADDR_SPACE0, IOP480_MODE_DWORD, dwLocalAddr);
return IOP480_ReadDWord(hPlx, hPlx->addrSpace, dwOffset);
}
void IOP480_WriteDWordLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr, DWORD data)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
IOP480_SetMode (hPlx, IOP480_ADDR_SPACE0, IOP480_MODE_DWORD, dwLocalAddr);
IOP480_WriteDWord(hPlx, hPlx->addrSpace, dwOffset, data);
}
void IOP480_ReadWriteBlockLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, BOOL fIsRead, IOP480_MODE mode)
{
DWORD dwOffset = hPlx->addrDesc[hPlx->addrSpace].dwMask & dwLocalAddr;
IOP480_SetMode (hPlx, IOP480_ADDR_SPACE0, mode, dwLocalAddr);
IOP480_ReadWriteBlock(hPlx, dwOffset, buf, dwBytes, fIsRead, hPlx->addrSpace, mode);
}
void IOP480_ReadBlockLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, IOP480_MODE mode)
{
IOP480_ReadWriteBlockLocal (hPlx, dwLocalAddr, buf, dwBytes, TRUE, mode);
}
void IOP480_WriteBlockLocal (IOP480_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, IOP480_MODE mode)
{
IOP480_ReadWriteBlockLocal (hPlx, dwLocalAddr, buf, dwBytes, FALSE, mode);
}
BOOL IOP480_IntIsEnabled (IOP480_HANDLE hPlx)
{
if (!hPlx->fUseInt) return FALSE;
if (!hPlx->Int.hThread) return FALSE;
return TRUE;
}
VOID IOP480_IntHandler (PVOID pData)
{
IOP480_HANDLE hPlx = (IOP480_HANDLE) pData;
IOP480_INT_RESULT intResult;
intResult.dwCounter = hPlx->Int.Int.dwCounter;
intResult.dwLost = hPlx->Int.Int.dwLost;
intResult.fStopped = hPlx->Int.Int.fStopped;
intResult.dwStatusReg = hPlx->Int.Trans[0].Data.Dword;
hPlx->Int.funcIntHandler(hPlx, &intResult);
}
BOOL IOP480_IntEnable (IOP480_HANDLE hPlx, IOP480_INT_HANDLER funcIntHandler)
{
DWORD dwIntStatus;
DWORD dwIntEnbAddr, dwIntStatAddr;
if (!hPlx->fUseInt) return FALSE;
// check if interrupt is already enabled
if (hPlx->Int.hThread) return FALSE;
dwIntStatus = IOP480_ReadReg (hPlx, IOP480_PINTENB);
BZERO(hPlx->Int.Trans);
// This is a samlpe of handling interrupts:
// Two transfer commands are issued. First the value of the interrrupt status
// register is read.
// The second will cancel interrupts after the first interrupt occurs.
// When using interrupts, this section will have to change:
// you must put transfer commands to CANCEL the source of the interrupt, otherwise, the
// PC will hang when an interrupt occurs!
dwIntEnbAddr = hPlx->addrDesc[IOP480_ADDR_REG].dwAddr + IOP480_PINTENB;
dwIntStatAddr = hPlx->addrDesc[IOP480_ADDR_REG].dwAddr + IOP480_PINTSTAT;
hPlx->Int.Trans[0].cmdTrans = hPlx->addrDesc[IOP480_ADDR_REG].fIsMemory ? RM_DWORD : RP_DWORD;
hPlx->Int.Trans[0].dwPort = dwIntStatAddr;
hPlx->Int.Trans[1].cmdTrans = hPlx->addrDesc[IOP480_ADDR_REG].fIsMemory ? WM_DWORD : WP_DWORD;
hPlx->Int.Trans[1].dwPort = dwIntEnbAddr;
hPlx->Int.Trans[1].Data.Dword = dwIntStatus & ~BIT0; // put here the data to write to the control register
hPlx->Int.Int.dwCmds = 2;
hPlx->Int.Int.Cmd = hPlx->Int.Trans;
hPlx->Int.Int.dwOptions |= INTERRUPT_CMD_COPY;
// this calls WD_IntEnable() and creates an interrupt handler thread
hPlx->Int.funcIntHandler = funcIntHandler;
if (!InterruptThreadEnable(&hPlx->Int.hThread, hPlx->hWD, &hPlx->Int.Int, IOP480_IntHandler, (PVOID) hPlx))
return FALSE;
// this physically enables interrupts
IOP480_WriteReg (hPlx, IOP480_PINTENB, BIT0|BIT8|BIT9|BIT10|BIT11|BIT12|BIT13);
return TRUE;
}
void IOP480_IntDisable (IOP480_HANDLE hPlx)
{
DWORD dwIntStatus;
if (!hPlx->fUseInt) return;
if (!hPlx->Int.hThread) return;
// this disables interrupts
dwIntStatus = IOP480_ReadReg (hPlx, IOP480_PINTENB);
IOP480_WriteReg (hPlx, IOP480_PINTENB, dwIntStatus & ~BIT0);
// this calls WD_IntDisable()
InterruptThreadDisable(hPlx->Int.hThread);
hPlx->Int.hThread = NULL;
}
IOP480_DMA_HANDLE IOP480_DMAOpen (IOP480_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, BOOL fIsRead, IOP480_DMA_CHANNEL dmaChannel)
{
DWORD dwDMAMODE, dwDMADPR, dwDMALADR, dwDMACOUNT, dwDMAPLADR;
DWORD dwChannelShift = (dmaChannel==IOP480_DMA_CHANNEL_0) ? 0 : IOP480_DMA_CHANNEL_SHIFT;
BOOL fAutoinc = TRUE;
IOP480_DMA_HANDLE hDma;
hDma = malloc (sizeof(IOP480_DMA_STRUCT));
if (hDma==NULL)
{
sprintf( IOP480_ErrorString, "could not allocate memory for dma handle!\n");
goto Exit;
}
BZERO (*hDma);
hDma->dmaChannel = dmaChannel;
hDma->dma.dwBytes = dwBytes;
hDma->dma.pUserAddr = buf;
hDma->dma.dwOptions = 0;
WD_DMALock (hPlx->hWD, &hDma->dma);
if (!hDma->dma.hDma)
{
sprintf( IOP480_ErrorString, "could not lock the buffer!\n");
goto Exit;
}
if (hDma->dma.dwPages==1)
{
//dma of one page ==> direct dma
dwDMAMODE = fAutoinc ? 0 : BIT11;
dwDMADPR = BIT0 | (fIsRead ? BIT3 : 0);
dwDMALADR = dwLocalAddr;
dwDMACOUNT = (hDma->dma.Page[0].dwBytes & 0x007fffff);
dwDMAPLADR = (DWORD) hDma->dma.Page[0].pPhysicalAddr;
IOP480_WriteReg (hPlx, IOP480_DMA_MODE + dwChannelShift, dwDMAMODE);
IOP480_WriteReg (hPlx, IOP480_DMA_PCILADR + dwChannelShift, dwDMAPLADR);
IOP480_WriteReg (hPlx, IOP480_DMA_LOCADR + dwChannelShift, dwDMALADR);
IOP480_WriteReg (hPlx, IOP480_DMA_COUNT + dwChannelShift, dwDMACOUNT);
IOP480_WriteReg (hPlx, IOP480_DMA_DPR + dwChannelShift, dwDMADPR);
}
else
{
DWORD dwAlignShift, dwPageNumber, dwMemoryCopied;
typedef struct {
DWORD dwSIZ;
DWORD dwPADR;
DWORD dwLADR;
DWORD dwDPR;
} DMA_LIST;
DMA_LIST *pList;
//dma of more then one page ==> chain dma
hDma->dmaList.dwBytes = hDma->dma.dwPages * sizeof(DMA_LIST) + 0x10; // includes extra 0x10 bytes for quadword alignment
hDma->dmaList.pUserAddr = NULL;
hDma->dmaList.dwOptions = DMA_KERNEL_BUFFER_ALLOC;
WD_DMALock (hPlx->hWD, &hDma->dmaList);
if (!hDma->dmaList.hDma)
{
sprintf (IOP480_ErrorString, "could not lock the chain buffer!\n");
goto Exit;
}
//setting chain of dma pages in the memory
dwMemoryCopied = 0;
dwAlignShift = 0x10 - ((DWORD) hDma->dmaList.pUserAddr & 0xf);
// verifcation that bits 0-3 are zero (quadword aligned)
pList = (DMA_LIST *) ((DWORD) hDma->dmaList.pUserAddr + dwAlignShift);
for (dwPageNumber=0; dwPageNumber<hDma->dma.dwPages; dwPageNumber++)
{
pList[dwPageNumber].dwPADR = (DWORD) hDma->dma.Page[dwPageNumber].pPhysicalAddr;
pList[dwPageNumber].dwLADR = dwLocalAddr + (fAutoinc ? dwMemoryCopied : 0);
pList[dwPageNumber].dwSIZ = hDma->dma.Page[dwPageNumber].dwBytes;
pList[dwPageNumber].dwDPR =
((DWORD) hDma->dmaList.Page[0].pPhysicalAddr + dwAlignShift + sizeof(DMA_LIST)*(dwPageNumber+1))
| BIT0 | (fIsRead ? BIT3 : 0);
dwMemoryCopied += hDma->dma.Page[dwPageNumber].dwBytes;
}
pList[dwPageNumber - 1].dwDPR |= BIT1; // mark end of chain
dwDMAMODE = (fAutoinc ? 0 : BIT11)
| BIT9; // chain transfer
dwDMADPR = ((DWORD)hDma->dmaList.Page[0].pPhysicalAddr + dwAlignShift) | BIT0;
// starting the dma
IOP480_WriteReg (hPlx, IOP480_DMA_MODE + dwChannelShift, dwDMAMODE);
IOP480_WriteReg (hPlx, IOP480_DMA_DPR + dwChannelShift, dwDMADPR);
}
return hDma;
Exit:
if (hDma!=NULL)
IOP480_DMAClose(hPlx,hDma);
return NULL;
}
void IOP480_DMAClose (IOP480_HANDLE hPlx, IOP480_DMA_HANDLE hDma)
{
if (hDma->dma.hDma)
WD_DMAUnlock(hPlx->hWD, &hDma->dma);
if (hDma->dmaList.hDma)
WD_DMAUnlock(hPlx->hWD, &hDma->dmaList);
free (hDma);
}
BOOL IOP480_DMAIsDone (IOP480_HANDLE hPlx, IOP480_DMA_HANDLE hDma)
{
return (IOP480_ReadReg (hPlx, IOP480_DMA_CSR + hDma->dmaChannel*IOP480_DMA_CHANNEL_SHIFT) & BIT4)==BIT4;
}
void IOP480_DMAStart (IOP480_HANDLE hPlx, IOP480_DMA_HANDLE hDma, BOOL fBlocking)
{
IOP480_WriteByte (hPlx, IOP480_ADDR_REG, IOP480_DMA_CSR +
hDma->dmaChannel * IOP480_DMA_CHANNEL_SHIFT, BIT0 | BIT1);
//Busy wait for plx to finish transfer
if (fBlocking)
while (!IOP480_DMAIsDone(hPlx, hDma));
}
BOOL IOP480_DMAReadWriteBlock (IOP480_HANDLE hPlx, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, BOOL fIsRead, IOP480_DMA_CHANNEL dmaChannel)
{
IOP480_DMA_HANDLE hDma;
if (dwBytes==0)
return TRUE;
hDma = IOP480_DMAOpen(hPlx, dwLocalAddr, buf, dwBytes, fIsRead, dmaChannel);
if (!hDma)
return FALSE;
IOP480_DMAStart(hPlx, hDma, TRUE);
IOP480_DMAClose(hPlx, hDma);
return TRUE;
}
BOOL IOP480_EEPROMValid(IOP480_HANDLE hPlx)
{
return (IOP480_ReadReg(hPlx, IOP480_DEVINIT) & BIT5)==BIT5;
}
BOOL IOP480_EEPROMReadWord(IOP480_HANDLE hPlx, DWORD dwOffset, PWORD pwData)
{
DWORD dwData;
DWORD dwAddr;
if (dwOffset % 2)
{
sprintf (IOP480_ErrorString, "The offset is not even\n");
return FALSE;
}
dwAddr = dwOffset - (dwOffset % 4);
if (!IOP480_EEPROMReadDWord(hPlx, dwAddr, &dwData))
return FALSE;
*pwData = (WORD) (dwData >> ((dwOffset % 4)*8));
return TRUE;
}
BOOL IOP480_EEPROMWriteWord(IOP480_HANDLE hPlx, DWORD dwOffset, WORD wData)
{
DWORD dwData;
DWORD dwAddr;
dwAddr = dwOffset - (dwOffset % 4);
if (!IOP480_EEPROMReadDWord(hPlx, dwAddr, &dwData))
return FALSE;
switch (dwOffset % 4)
{
case 0:
dwData = (dwData & 0xffff0000) | wData;
break;
case 2:
dwData = (dwData & 0x0000ffff) | (wData << 16);
break;
default:
sprintf (IOP480_ErrorString, "The offset is not even\n");
return FALSE;
}
return IOP480_EEPROMWriteDWord(hPlx, dwAddr, dwData);
}
void IOP480_Sleep(IOP480_HANDLE hPlx, DWORD dwMicroSeconds)
{
WD_SLEEP sleep;
BZERO (sleep);
sleep.dwMicroSeconds = dwMicroSeconds;
WD_Sleep( hPlx->hWD, &sleep);
}
BYTE IOP480_EEPROMEnable(IOP480_HANDLE hPlx, WORD addr)
{
DWORD dwVal ,dwAddr;
BYTE bOldValue;
DWORD mask = BIT8|BIT9|BIT10|BIT11|BIT12|BIT13|BIT14;
dwVal = IOP480_ReadReg (hPlx, IOP480_DEVINIT);
bOldValue = (BYTE) ((dwVal & mask) >> 8);
dwVal = (dwVal & ~mask) ;
dwAddr = addr / 4; // using LWord (4 bytes) address.
dwAddr <<= 8;
dwAddr &= mask;
dwVal = dwVal | dwAddr ;
IOP480_WriteReg (hPlx, IOP480_DEVINIT, dwVal) ;
IOP480_Sleep(hPlx, 10000);
return bOldValue * 4;
}
void IOP480_EEPROMDataReadWrite(IOP480_HANDLE hPlx, BOOL fIsRead, PDWORD pdwData)
{
WD_PCI_CONFIG_DUMP pciCnf;
BZERO (pciCnf);
pciCnf.pciSlot = hPlx->pciSlot;
pciCnf.pBuffer = pdwData;
pciCnf.dwOffset = IOP480_VPD_DATA;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = fIsRead;
WD_PciConfigDump(hPlx->hWD,&pciCnf);
}
void IOP480_EEPROMAddrReadWrite(IOP480_HANDLE hPlx, BOOL fIsRead, PWORD pwAddr)
{
WD_PCI_CONFIG_DUMP pciCnf;
BZERO (pciCnf);
pciCnf.pciSlot = hPlx->pciSlot;
pciCnf.pBuffer = pwAddr;
pciCnf.dwOffset = IOP480_VPD_ADDR;
pciCnf.dwBytes = 2;
pciCnf.fIsRead = fIsRead;
WD_PciConfigDump(hPlx->hWD,&pciCnf);
}
BOOL IOP480_EEPROMReadDWord(IOP480_HANDLE hPlx, DWORD dwOffset, PDWORD pdwData)
{
WORD wVal;
WORD wAddr;
int i ;
BOOL fEnd = FALSE ;
if (dwOffset % 4)
{
sprintf (IOP480_ErrorString, "The offset is not a multiple of 4\n");
return FALSE;
}
wAddr = (((WORD)dwOffset) & (~BIT15)) ;
IOP480_EEPROMAddrReadWrite(hPlx, FALSE, &wAddr);
IOP480_Sleep(hPlx, 10000);
for (i=0; !fEnd && i<100; i++)
{
IOP480_EEPROMAddrReadWrite(hPlx, TRUE, &wVal);
if (wVal & BIT15)
fEnd = TRUE;
IOP480_Sleep(hPlx, 10000);
}
if (i==100)
{
sprintf (IOP480_ErrorString, "Acknoledge to EEPROM read was not recived\n");
return FALSE;
}
IOP480_EEPROMDataReadWrite(hPlx, TRUE, pdwData);
return TRUE;
}
BOOL IOP480_EEPROMWriteDWord(IOP480_HANDLE hPlx, DWORD dwOffset, DWORD dwData)
{
DWORD dwReadback;
WORD wAddr;
WORD wVal;
int i;
BOOL fRet;
BOOL fEnd = FALSE ;
BOOL fReadOk = FALSE;
BYTE bEnableOffset;
if (dwOffset % 4)
{
sprintf (IOP480_ErrorString, "The offset is not a multiple of 4\n");
return FALSE;
}
wAddr = (WORD)dwOffset;
bEnableOffset = IOP480_EEPROMEnable(hPlx, wAddr);
wAddr |= BIT15;
IOP480_EEPROMDataReadWrite(hPlx, FALSE, &dwData);
IOP480_EEPROMAddrReadWrite(hPlx, FALSE, &wAddr);
IOP480_Sleep(hPlx, 10000);
for (i=0; !fEnd && i<100 ;i++)
{
IOP480_EEPROMAddrReadWrite(hPlx, TRUE, &wVal);
if ((wVal & BIT15) == 0)
fEnd = TRUE;
IOP480_Sleep(hPlx, 10000);
}
fReadOk = IOP480_EEPROMReadDWord(hPlx, dwOffset, &dwReadback);
if (fReadOk && dwReadback==dwData)
fRet = TRUE;
else
{
fRet = FALSE;
if (fReadOk)
sprintf (IOP480_ErrorString, "Write 0x%08x, Read 0x%08x\n",dwData, dwReadback);
else
sprintf (IOP480_ErrorString, "Error reading EEPROM\n");
}
IOP480_EEPROMEnable(hPlx, bEnableOffset);
return fRet;
}